THEORY OF RADIATION FROM THE OPEN END OF A CIRCULAR
WAVEGUIDE FLUSH-MOUNTED TO A FLAT GROUND PLANE ¥

by

S. N. Samaddar **

1. Introduction

The problem of radiation into free space from the open end of a coaxial
waveguide flush-mounted to an infinite ground plane has been considered pre-
viously by several investigators [Levine and Papas, 1951; and Cohn and
Flesher, 1958]. In that problem, the dominant TEM mode is assumed in-
cident in the waveguide. Because of the angular symmetry of the incident
TEM mode and the geometry of the problem, the reflected and the radiated
fields also remain angularly symmetric (i.e., 8/8¢ = 0). Therefore, TE
modes will not be excited and consequently, two scalar potentials, one
inside and the other outside the waveguide, are needed to describe the
electromagnetic fields everywhere, However, in the present problem (Fig-
ure 1), the waveguide is a circular one from which the dominant TE; mode
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Figure 1. Radiation of TEj; Mode from the Open End of a Circular Waveguide Flush-Mounted to a Con-
ducting Plane.

is launched. ®Since in this situation, the electromagnetic fields depend on
the angular coordinate ¢, the discontinuity of the open end of the waveguide
will excite both TE and TM modes; in general, both inside and outside the
waveguide, Therefore, in each region (waveguide and free-space), two po-
tentials are necessary to represent the electromagnetic field, However, in
a limiting situation which will be discussed in the text, only one scalar po-
tential is needed for the description of the fields inside the waveguide in
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which all TM modes are assumed vanishingly small, Even in this situation
where TM modes inside the waveguide are negligible, both TE and TM
modes will be excited in the free-space (i.e., the unbounded half-space).

It is assumed that the circular waveguide is designed in such a way that
it can carry only the dominant TE,, mode unattenuated. Even the TM;
mode becomes evanescent, Furthermore, it will also be supposed that the
angular variation of all the excited electromagnetic modes is a linear com-
bination of sin ¢ and cos ¢, such that they are consistent with the angular
variation of the incident TE,; mode, This is a reasonable assumption as
long as the geometry of the problem possesses angular symmetry. In par-
ticular, the angular dependence of the longitudinal magnetic field of the
TE,, mode is chosen to be Qy(f) = o, cos ¢ + i o, sin 4. The reason
for this choice of the angular variation is that it is general for a TE;;
mode and it can represent either linearly or elliptically polarized waves,
It may be noted that circularly polarized waves do not exist in a circular
waveguide, The real constants o; and o; depend on the ellipticity of the
polarization. Then it turns out that the angular dependence of the longi-
tudinal electric field of the excited TM;; mode must be given by @;(d) =
o1 sin ¢ - i oy cos ¢. Therefore, the higher ordered modes excited in-
side the waveguide correspond to different radial variation of the fields,

In order to express the electromagnetic fields in the unbounded half-space,
an appropriate Hankel transform has been introduced. The radiation fields
(i.e., far-fields), which thus have integral representations, are evaluated
formally by the method of saddle point integration. The amplitudes of the
excited fields and the reflection coefficient which is related to the admittance
of the circular aperture depend on the unknown radial and angular electric
fields on the aperture.

These unknown electric fields on the aperture can be shown to satisfy
two simultaneous integral equations which have been solved by two methods:
(1) variational principle and (2) successive iteration method. For the first
order approximation, it has been possible to show that these two methods
lead to identical results,

Assuming from the beginning that the higher order TE modes as well as
the TM modes are not excited by the discontinuity of the circular aperture
Mishustim [1965, a Russian work ] and Bailey, Samaddar and Swift [ 1967
in a joint work independently calculated the input admittance of the aperture
and the radiated fields (for which o; = 1 and o, = 0). These results are
also obtained as a special case (lowest order approximation) in this paper.
It may be noted that the English translation of the work of Mishustim is
not available yet, Also, the method of approach adopted by Mishustim seems
to be different from the present work as well as that Bailey, et al,

It is shown that the general expression for the admittanice does not depend
either on the nature of polarization (linear or elliptical) or on the ampli-
tude of the incident wave.

2. Formulation of the problem

The geometry of the problem is shown in Figure 1. A circular waveguide,
fedin the dominant TE,; mode, which is assumed to be elliptically polarized,
is flush-mounted to an-infinite, perfectly conducting flat-grounded plane,
The relative dielectric constants of the materials inside and outside (un-
bounded half-space) the waveguide are taken to be €, and e€,, whereas the
relative permeability is assumed unity everywhere. Because of the cylin-
drical symmetry of-the problem, cylindrical coordinates r, é, z will be
chosen, with the origin at the center of the circular aperture, The wave-
guide region and the free half-space correspond to z < 0 and z > 0 respec-
tively.

It is easy to show that inside the waveguide, both the longitudinal (or
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axial) fields, E,; and H,;, satisfy the following Helmholtz equation (the
assumed harmonic time dependent e ' will be suppressed throughout the
analysis):

(V’+ K’) E, = 0 (1i)

(V> + Klz) H,6=0 (1ii)
where,

K" = K = vue e, (Liii)

The transverse components (i.e., r and ¢ components) of the electro-
magnetic fields can be expressed in terms of E , and H , in the follow-
ing manner: ¢

92 9

2 _ 9 . , )
(K1 + _i;'—z—é) Etl = 3z V[ EZ1+ oy Vt Hzlx 20 (2i)

2, 82 H. = 2 VH._ +i 5 xV E .
(K, azz) By = 3z il tww, e 2, x Vi Ejy (21i)

If the vector P stands for either E or H, then one may write P = P, +
2 P, and similarly one has v = v, + 2, 9/ 9z, where 2, is the unit vector
in the z-direction.

In order to represent the electromagnetic fields in the free-space (outside
the waveguide), one may express all the relevent quantities in the way shown
in the relations (1) to (2), by replacing the subscript 1 by 2, However,
for convenience, which should be clear in the text, two Hertz potentials
F, and F, (Stratton, 1941) are introduced in the following fashion:

vVP+ K F, =0 (31)
vi+K)F, =0 (3ii)
E = I KA F i
22 (——_é 2 1 (41)
0z
2
= 1 .2. 1D + 9 Fl .
2 T WK, T op 2 or 9z (411)
2
B ocieg 2@ 4101 (4iii)
#2 o9r "2 r 3 oz
= 8’ + K, i
H, = (az_2 2) Fo (4iv)
a® F, L s
H, = ar oz | ‘W€, T 3¢ F, (4v)
2
12 ¥ . -
Hpe = 7 9d oz twe € o My (4vi)
where,
K,” = K e
o 2
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Since the incident TE,, mode inside the waveguide is considered ellip-
tically polarized, the §-dependence of H, can be taken to be Qy(4) = o,
cos ¢ + io, sin ¢. Consequently, the angular dependence of the excited
longitudinal field E, becomes Q,(¢) = o, sin ¢ - ioc, cos ¢. The respec-
tive @ -dependence of H, and E, will be the same both inside and outside
the waveguide, These requirements follow from the single-valued behavior
of the electromagnetic fields.

If ' be the reflection coefficient, then the total fields (incident and re-
flected) inside the waveguide can be expressed in the following manner:

B2 -2iB,z - oz
H, = @2(56) A Ji(nr) e 1+le } - EA I () e 1 (51)

o YIZ .
Ezl = @1 (¢) .lEl Bl Jl()‘[r) € ’ (511)
wu A i,z -2iB.z
. 1
E, = -i ®,(¢) —f;:—Jl(nlr) e {1 +Te 1 p-
1 (61)
o Ay 3 %pZ +i v B ' Yz ?
- n}gz——é— 1(T)nr) e . 11==1 N~ JP(h,r) e s
n-r ye
n
wH A iB,z { ~2iB,z
— - 1
E¢1 = 1@2(56) 1 J1 (nlr)e 1;+ e }+ (i)
B,
= n an . = PR3 YIZ
—_— 1 - ———
+ o n§2 n J,'(nr)e 1151 ” JiA,r) e ,
n )LIZ
B, A 8.z ~2iB,z
Hy = 0,) | > 3, (e 7 {1 -0 ™)
1
(6iii)
C a w BrJiA,r) 4,z
+H T —— J'@,r) en® - ve € L ———— e’ |,
n=2 L[ 2=1 kj r
B A i8 ~2iB
Hy = -1, (4) 2 J,(nr) e v { 1-re ¥ } +
2
(6iv)
A a B
L w» o n oz _ o= 4 . Ye Z
+ 1n§2 —— Ji(nr) e weo € L X, Ji'@,r) e ,
n, r
where,
Bl = K12 - T)12 1
a, = Vnn2 - K12, n 2> 2
r for TE modes (7)

Jl'(nnro) = 0, forn=1,2,3,...

r, = radius of the waveguide
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N 2
Y. = VAo - Ky

: for TM modes (8)
J (,r,)) = O, I =1,2,...

The quantitites o, and o, appearing in @,(4) and Py(4) together with
A, are assumed to be known and they related to the amplitude and the
ellipticity of the inc¢ident TE,; mode, The amplitude coefficients A, and
B, for the higher ordered modes as well as the reflection coefficient I’
are to be determined from the boundary conditions at z = 0 (at the aper-
ture), Note that the requirements, J '(n,r,) = 0 and Jy(A,r;) = 0, which
determine n, and A, respectively, for a given r,, ensure the vanishing
of the tangential electric fields (and hence the normal component of the
magnetic fields) at the wall (r = r,) of the:-waveguide. : N

Because of the cylindrical symmetric of the problem, it is expedient to
introduce Hankel transform of the differential equations (3) to (4) appro-
priate for the free-space fields, with respect to the Kernel J,({r), where
¢ is the transform variable, Therefore, 'if Q; represents a well behaved
function of r and z, then its Hankel transform pair is defined in the fol-
lowing manner [Morse and Feshbach, 1953]:

Q,(r.2) = jr 31 (er) Qi(¢,2) de (9i)
where, 0

Qi(ro z)

5 r J(§r) Q(r,z2) dr (9ii)
0 ,
Then, if Q({,z) is an odd function of {, then (9i) may be rewritten as
[Samaddar, 1965]:

=

J em®en aa ar e > o; (10)

ofe i

Qi(r‘ Z) =

Now, in particular, if we assume that {Q;({,z) = Ti(l_:)‘erEz where £ =
(K‘22 - £€2)1/2, then following Equation (16) of Samaddar (1965), the asymptotic
value of (saddle-point contribution) (10) for |¢r| >> 1 can be expressed in
the following manner [for sin 6 # OS

iKoR
e
Q,(r,z) ~ - [cot GTi(C)] 2 (11)
in which the following substitutions are inderstood:
t = K, sin 0 ]
E = K, cos 0 : :
( (12)
z = R cos 0
r = R sin 0 J

Therefore, if one represents F (r, ¢, z) by,
Fi(r,8,z) = Qi(r,z) Q;(4), for i = 1,2, (13)

the asymptotic values of the Hertz potentials F; and F; can readily be
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obtained from Equations (11) and (13).

Now, employing the above-mentioned Hankel transform, the following
integral representations of the electromagnetic fields in ‘the free- -space
region can be established.

F, = Q,9) f € J,(8r) T, (¥) e ar (14i)
0

F, = §y(4) )’C J (%) T, (€) €™ dt (14ii)
0

Hy = &, [ € 5,60 Ty0 o (151)
0

Ey = 0:(9) f’rs Jy€r) Ty () e dg ' (15ii)

Ep = -1 @1(¢)[ j ¢ Jy (%) Ty(¢) e

(161i)
- je ¢ 3,0 (€r) Ty (€) & dr] ,
Eg = 1 §y(4) [ wuoj §23, ' (€r) T, (€) ™ ag +
w 0 . (16ii)
* %.5 £8 T Ty @) e dc},
0
. = 2 itz
He = i §z(h) “ E & J'(Er) Ty() e dg -
(16iii)
W E E tz
il jg I, (€r) T, ) o' dr]
R 1 itz
Hy = -i §,(4) {; j‘e ¢ Jy(gr) Ty(g) e™ dg -
0 (16iv)

R rgz 3 (gr) T, (¢) &% dg].
0

The amplitude factors T, (§) and T 4(§) will be determined from the boundary
conditions at z = 0,

3. Boundary conditions

The unknown coefficients, [, A, B,, T;({) and T, ({) appearing in the
relations (5), (6) and (14) to (16) are to be determined from the requirement
of continuity of the tangentialeleciromagnetic fields at the aperture (at z = 0).
These continuity relations are expressed in the following manner:
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E = E
g1 z = 0 42 A
H = H
rl 2 = 0 12 2
H 4 = H 42
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IR ORI (179)
60 B (17id)
T 88 (174i)

= #,(r) D1 (4) (17iv)

=0

E1(r), €49(r), #,(r) and Hy(r) of the respective

aperture fields are understood to be defined by (17), These unknown aperture

distributions are related
and Tz(g)

fined for n > 2, one could

A, would have been related to ['. Therefore,

to the unknown coefficients, ', A, B,, T (¢t)

The constants [ and A, are to be determmed from similar
types of operations (orthogonality propertles of J,(n,1)). Though A,

is de-
1, in whlch case
there should not be any con-

have defined it also for n =

fus1on from the apparent appearance of f1ve unknown quantities which are
to be determined from four boundary conditions specified by (17).

Imposing the boundary conditions (17) on (6) and (16),

lations are obtained:

the following re-

WH A, w B w B2Y .
a0 DR ek ) A e -

- i€, (@) = (18)

(IJ,UO © 0 0
= — jd{’ ¢ Jy(Er) Ty (8) - jdr €8 J.'(r) Ty(%),
0 0

wquo °°An : « B,v
— 1 - 3 e -

n; 1+ ) I (mr) - wy, n)=32 n. Ji' (nyr) + iL 121‘ Ji(r,r) =
=i€y(r) = (19)
= j & 2 J '(Er) T,(8) - % jdcgng(rr) T, (€).

0 0
B,A, Aa, « B.J (0,r)

m -0 J,'(mr) +1i nEz—n— Ji'(r) - w € A =

1 7\1 r
= - #1(1‘) = (20)

] 0 WE, €, %
= jd’: £ ¢° J1'(Er) T, (%) - ) de ¢ J,€r) T (9),
0 0
Ble = A o - B
n %r (=0 qgr) 1L n.2r T (a7) = @ €153, Ty =

1
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= 1 #Hy(r) = (21)
- i@ et e HE - 5 de €% 1,1 €r) T, ().
0 0

Now, multiplying Equation (18) by r d/dr J;({r) dr and Equation (19) by
J1(§ r)dr respectively and then integrating the respective left~hand side from
0 to r, and the right-hand side from 0 toco, one finds the following re-
lation after adding these two results (using the relations (A-10) to (A-13)).
Before performing the integration with respect to r, the integration vari-
able, §, on the right-hand sides of (18) and (19) is changed to {' for con-
venience,

fo{amrtnems aonem]-ifeno -
0 |
. Ao(l + F)-Jl(nlro) Lo n
= |-iwp, 5 + lwp, L —— T () + (22)
n, , =

2
BZ‘YI I‘og Jo()\j ro)

oo,

L 2 2
£=1 kl(g _kl) .

+ \Jl(Cro)

Similarly, first changing the integration variable on the right-hand side
of (18) and (19) from ¢ to ', we multiply (18) and (19) by J;({r) dr and
r d/dr J;(§r) dr respectively. Then, integrating the left-hand side from
0 to r, and the right-hand side from 0 toco, we have (using (A-12),
(A-13) and (A-15)):

I

5 ar { €,(r) I (8r) + €5(r) Edf- ler)}= ~lwp, ¢* To (%) =

’ A (1 ) A ) (#3)
1+ )y J(nr J.(nr
. o) 1M1 o el n-1''n"o
- -iwg - R e r g, (e ).
°1 m?-eh =g |0

Further appropriate operations on the relations (18) to (2‘1) will depend
on the approach (namely variational method or successive iteration method)
by which those integral equations are solved,

4. Variational principle

For the formulation of a variational principle, first of all expressions
for A,, A, B,, T; (%) and Ty{) must be obtained in terms of £,(r) and
€4o(r) from (18) and (19). When these expressions are substituted in (20)
and (21), there results two simultaneous integral equations involving £, (r)
and £,(r). From these two integral equations, a variational expression for
the aperture admittance will be obtained,

The relations (22) and (23) can be used as expressions for T;({) and
T, (§) respectively in terms of €,(r) and £5(r). Now, in order to represent
Ay(l + ') and A in terms of £,(r) and £,(r), let us multiply (18) and
(19) by J,(n,r) dr and r d/dr J, (n r) dr respectively. Then, integrating
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from 0 to r , we have (using (A-12) and (A-14)):

Ol
i2 1 co
A1+ 1) = ) - 2 fdr {Sl(r) T
w [(’711’0_) ) 11 Trr) g
4 ) 20", (24)
+ Ey(r) v gp Iy (0 } = [
(nlro) l:l J
;ar ¢? Jz'(rrz) T () 5 ¢ & T, @)et" 7, (¢r, )t |,
. 1Y Wi nl o 0
i2 nn2 j"
A = - dr {El(r) le(n r) +
o wuo l:(nnro)2 - 1] le(nnro) 0 n
(25)
d 2 nn4r0
+ E‘ ryr =— J n r)} = - *
2() dr 1( n l:(n r )2 - ljl le(nnro)
< dat 23 ' (¢r ) T, (%) i A ot
X , 12 ' 02 : - : 2 5§ : T, (S)e ko FULRLNP
0 nn - g WA nnro
for n > 2.

Finally, to express B, in terms of £;(r) and E,(r), change the sum-
mation index £ to £' and then multiply (18) and (19) by r d/dr J, (A,r)
dr and J;(A,r) dr respectively. Then, integrating from 0 to r,, we find
(using (A- 11f, (A-12) and (A-16)):

9 0
B, = dr ‘[E J A + £, J(x
C a0, é ) a0 70 }

(26)

oy j’dr reT(z)J@r)

Yo JdolA o) o
Tovs lo Z

It may be noted here that the last equality in all of the preceding rela-
tions (24). to (26) will not be needed. However, they are presented here
for the sake of completeness only,

Now, substituting the values of T, (f), T,(f), A,, A, and B; in terms
of €(r) and £,(r) from (32) to (26) into (20) and (21), the following simul-
taneous integral equations are obtained:

AL, % Jimir) = L(r,r") f_l(r') + Ly r,r'") Ez(r'), (27)
Ji (1)
o T 7 = Lgr.r') £,(r') + L (r,r') £ (). (28)

where we have,
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- . 2 Y(0) _ , (29)
(1) - 1] I % (nry)

) B, (1 + D) ) )
Y(0) = W— aperture admittance, (30)
r
(o)
d
L = fdr' {El(rl),jl(fllrl) + Ez(r')-r' I Jl (nlrl) }' (31)
0
The operators are defined as;
I, . d
w 2l J (nr') o J. (nT)
Ll(r=r')81(r') = 5 dr! {gl(rn)} )32 n "1V - dr "1 2n
0 = w/“o (nnro) - ll Jl (nnro)
d
Tt a5 T () T A,r)/r
-2ive € T dr? 71 Ll + (32)
o P4

= ‘ 2
' (KZ 'ro) ’YZJOZ (Kg I‘o)

d
e fdlr' — J (fr*) J.(¢tr)
+ 5 a2 ey £ 5. + wee, § drl 2 - ,
0

wu, 8§ ¢ & c T
0
r s d
0 w 2lopr' == Ji(n,r') d
r,eyE) = § arr{E,!l | T dr 45 -
R 5s Lexo] [2 oty [y - 1] 3 ) & 1)

, w T, )T (1)
- 2iwe € L L 5 - 5 + (33)
L=l (Kl ry) Yy I (Kz ro)

S e Eaen o ge [ £ JI«r-ulwr] ,
0 0

(o]

w 2la J (n 1) (n,r)/r
dr! { E:1 (r! )} 2 2
o=z WH [(nnro) - 1] I (M%)

L(r, 7)€ (') = j
0

d d
o =L oy S0,
- givee §—dp 4 dr TTe o, (34)
o 11:1 2 2 J 2
( ,e ro) ’Y’e o] (A'[ ro)

T ar L oneeny oo }

+ 5 dt & Jl(g’rl),]'l(g’r)/r + we €,) t
0

Wi, ¢
0

- d
0 e Zier' 55 J(nr') J, (m,r)/r

Ly(r,r')Ep(r') = ! dr { Ez(r')} % Wi l:(ﬂnro)2 - 1] J12(nn‘ro) —
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d
, w J1(2T") g5 I, (A,T)
- 2“"6061}2 5 2
To,r) v, I, 0,1,)

(35)

dat
CE

+ 5 deg v _d J,€r") J, €r)/r + we €, 5 J; (€r") adf J(¢r)
0 0

wu £ dr!

Multiply (27) and (28) by r&q (r)dr and r €,(r)dr respectively and integrate
both sides from 0 to r,. Then, adding the results, the quantity A which is
related to the aperture admittance, Y(0) can be expressed in the following
manner:

A = Ll 2 ,‘dr r £,(r) Lg(r,r") £, (r') + fdr r £y(r) Ly(r,r') €,(r") +
o 0 0

(36)
+ 5dr r fo(r) Li(r,r') & (r') + 5

0 0

o

dr r g(r) Lyr,r") Eg(r')].

It is shown in Appendix B, that A (and hence, Y(0) given by (36) is sta-
tionary with respect to the first-order simultaneous variation of £ (r) and
&,(r) about their respective correct values.

Note that one could have obtained an alternative variational expression
for A in terms of the aperture magnetic fields #,(r) and #,(r) instead of
the aperture electric fields £4(r) and £g(r) as shown in Equation (36).
However, it will not be attempted here,

5. Application of the variational principles
From the definitions of £,(r) and €,(r) given by (17) and the expressions

(18) and (19), it implies that the aperture electric fields £,(r) and &,(r)
can be expressed in the following manner;

oo Jl(nnr) o
£,(r) = e T bg )‘IJl'(Alr)‘ (37)
and
o o J1 (A,Zr)
€yr) = I an, J"(nyr) + F by ——, (38)

where a, is related to A; and [, whereas a (n 2 2) and b, corespond to
A - (n > 2) and By respectively,

"Now, substituting (37) and (38) for £,(r) and £ ,(r) respectively into the
variational expression (36), A can be expressed in terms of a_ and b, in
the following way (using the integrals in Appendix A) after some suitable
manipulations:

- . ¥ (D 2 . R 2) 4 2 ® =) 3 5
A= £§1 ¢ bz n=EZ Cn( a n§1 n'E=1 anan' { cﬂn'( )+ cnn'( )+
o o @ o - R ;
YA A BBy cop'™ ¥ & 5 &b cnl() (39)
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The symbols introduced in the expression- (39) are defined as follows:
. 2 .2
(1) Aweje (A ry) Jo (A1)

cp = A2, (40)
v, Lnr)? - 1) 3ty

- - 2T 2 : 2 :
c 2 _21a’n [-(nnro) - 1] Ji (nnro)
n

= , > 2, 41
oy [(2)? - 1) 3Pengry) T T “n

41 0 n )3 ,n) R A E TR

€’ = . = c ., @
o o, [(7,)? - 1]% 34y (7 -e)) (1,2 -eh) nn
: , (42)
n,n' > 1,
(4 4“’60€2llro)‘!l'roJo(A[ro)Jo()‘ﬁ'ro)
c = X
p74 2 2 . 4
. [(nlro)- 1] l:‘-1 (nl«ro)
- 3.2 h ’ ‘ (43)
dag ¢ J; (gr,)
X‘j 5 5 5 —s = cz.!£(4) ;zgsf'_Z_l.,
R L VT . |
\ 4 I S
o Awegey, I (r ) (nger,) p 48T (Er)) ‘
Cp® = T 54 j ¢ gQ = cn'n(S) (44)
nn ‘ . . : »
Knlro) } 1:] I (mre) 7 ) v
n,n >1,
- 2
Bwe €, J(N 1) (Apry) Jo(Rery) ¢ dl € T, (8r,) .
c (6 = c (6) (45)
nf l: 2 ],_2 4 E(§_2 - 2) _ £n >
(e} -1 T gry) 0 2 ‘
n,d 21,
& _=a_/a,, where m = n or n!
(46)

Bj = bj/al, where j = £ or £

consequently &, = 1
The expressions L L 4.4, { cnn'(a) + cnn@} and L L 4 b,c &
can be rewritten as:

(3) O (3 (5) (3) ()
L L anan" {cnn' + Con’ }" {C._ll + Cn }+ znfzén {cnl‘ + Cn }+

n=l n'=l

(471)
(3 (5)
+E L oaa. { it + i } ,
- ® _ np (6) ~ (6) ..
1§1 n§1 anbl Cre _151 by cyp +z§1 [%;2 anbl Cng (47i1)

Now, using (47i) and (47ii), the expression for A given by (39) can be
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rewritten in the following manner;

(3) (9) 3 (9) (3) ()
A= {Cll + Cll } +2L 5'n{cnl * Cnl } +n§2 n2':=2 é'né'n' {Cnn' + Cnn' }+

n=2
oo )] ~ (6) ~ (6)
+ b, b,. S+ a,b, ¢ + L b, ¢ -
A A e e & L 0B Cne f = B
~ 2 (D 2 (2
- b c - L4 c . 48
2=1 £ £ n=2 n i ( )

Owing to the stationary character of A, on differentiating (48) with respect
toa and b,, the following infinite set of simultaneous equations are ob-
tained; .

Since &, and b, are independent, one then has;

oA _ 3) (5) 3) (9)
—B_Ta‘,_n = 2 {cnl + Cn1 } * anzan' JLcrm‘ + cnn' }

(491)
(2) " 6
"2 ﬁn Cl’l +l§1b'z Cnl 0_,
n= 23...,

and

BA _ _or . (D 0 “® (8 (&

ab , = -2b, Cy + 2[2:=1b[ Crp +t ¢y, +n2=:2 a, ¢, =0
(49ii)

2=1,2,3,...

One can also arrive at the results (49i) and (49ii) directly without resorting
the variational properties of A with respect to the independent variation of
a, and b, respectively in the following manner.

Multiply (27) and (28) by r d/dr;J (n,r) dr and J;(n,r) dr respectively
(where n > 2), and then integrate from O to r, using the relations (37)
and (38). When these two resulting expressions are added, one obtains (49i)
with the help of the results in Appendix A and the relations (40) to (46).
In order to obtain (49ii), multiply (27) and (28) by J;(A,r) dr and r d/dr
Ji (A r) dr respectively and then integrate from 0 to r, using the relation
(37) and (38) followed by the same procedure sought for the derivation of
(491) by this direct method.

Now, multiplying (491) by &, and then summing over n = 2 to », we
have:

2L &, {cnl(B) + cn1(5)} +2L L 4,4, {cnn'@ + cnn.(s) } -

n=2 n=2 n's2

_ 2 (2 ® _
2 L8 “¢c +n§2£155c 0.

n=2 0 n n £7n2
Similarly, multiplying (49ii) by b, and summing over £=1 toco, we have:

25,2 s e BB, e, b o 4
by ey 4 tPp cyp t LDz

A= =1 0'=1 =1 12
(51)
- (6)
+ L L4 b c =0
4=l n=2 n 4 nl

Now, in view of the relations (50) and (51), the expression for A given
by (48) can be represented in the following fashion:
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~ (3) (5) ®» 2 () _ @ @& ~- 4
A = {011 + ¢y } +1§1bz C, 121 Z=11 blbl' Cypr +

o

(52)

n=2 I n n=2 n'=2

+2a’c® - poaa, {cm.(s) v @ }

@ x - o (6)
- T 5 abl C.;

Note that the equation (49) provides the relationship among the coefficients.
Therefore, - for numerical computation of A, both (48) and (52) should be -
considered simultaneously.

6. Iteration method -- an altevnative approach

In order to follow this approach of solving the set of integral equations
for the unknown coefficients I, A, B,;, T f) and T,({) given by the
Equations (18) to (21), we obtain first a set of relations analogous to (24)
to (26) (which were obtained from (18) and (19) using this time (20) and
(21). To do this, let us multiply (20) and (21) by r d/dr J;(myr) dr and
J (n,r) dr (where n = 1,2,3,...) respectively and then integrating both
sides from 0 to r;, we find after adding (using the results of Appendix A):

2 n? . F A& €I (Er)Ta(Y)
Al - 1) = 2 LY ro). . > -
Bl [(nlro) —1:] J‘1(171]7‘0) 0 ny ~ ¢
o (53)
- w 60625 dg ¢ J(¢r,) Tl(t)} ,

0 . 4 5

, -2in_ , 3 REZET (&) T (Y

= n ro ~ =
Yo [ - 1] S | T 5 n* - ¢’

'WEofz.‘ & ¢ F(lro) To(Y |, nx 2

0
Once again, multiply (20) and (21) by J;(A,r) dr and r d/dr Ji(Azr) dr
respectively and integrate both sides from 0 to r,. Then adding the re-
sulting expressions, we get with the aid of the results of Appendix A:

By

v
[y

20 3 3 J1(8r5) Ty (€)
T or € Jo(xlro)s ¢* - 2, (55)

0

Though the relation (55) is derived from the requirement of the continuity
of the tangential components of the magnetic fields across the circular
aperture, one could have obtained it also from the continuity of the axial
component of the electric displacement vector (i.e., ¢,E = gE,, at
z = 0) across the aperture. This second interpretation of fhe resuif (55)
will be found useful in obtaining approximate results.

Now, the expressions (22), (23) and (53) to (55), excluding the portions
containing £ i(r) and £g(r), constitute the required equations to be solved
for I, A,, B , Ti(f) and Ty (¢) by iteration method. This iteration method
of solving the above mentioned simultaneous integral equations consists of
successive approximations which need an- initial approximation or a trial
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solution, Then a systematic successive use of the equations to be solved
yields better and better approximations to the solution sought for. The
more accurate the initial or trial solution is, the lesser the number of
iterations necessary to obtain a required accuracy. The main idea behind
this procedure is the same as that one adopts in obtaining a more accurate
result of a quantity from its variational expression. Since a physical insight
into a problem helps often to select judicially, a better initial and approx-
imate trial solution, let us digress for a moment to. discuss the relative
importance of the various modes excited by the discontinuity of the open
end (circular aperture) of the waveguide.

If it is assumed that the waveguide is circularly symmetric and there
is no discontinuity in the boundary along the angular (¢) direction, an
incident TE,; mode will excite TE,, and TM ;; modes (n, £ > 1) inside
the waveguide, where n and 4 correspond to various radial modes. Also,
if the circular waveguide is designed in such a way that it allows an un-
attenuated propagation only for TE;; mode, all other higher-order modes
TE;, (n 2 2)and TM,, (£ > 1) will be attenuated, The higher the cut-off
wave number of a mode is, the higher will be the attenuation of that mode.
In view of the relations (5ii), (15ii) and (55), one can argue that a situation
may arise for which B, and hence, the right-hand side of the integral (55)
are vanishingly small; however, T;({) is finite and not necessarily negli-
gible. This implies that TM;, modes inside the waveguide and consequently,
the axial electric field at the circular aperture are negligibly small. It
may be noted, therefore, that though the axial electric field in the vicinity
of the aperture on the free-space side (i.e., unbounded space) may be
vanishingly small, it may not be neglected (since T,({) is not negligible)
everywhere else, Another important point which deserve attention is that
though the cut-off wave number of the dominant TE,; mode (for which
n,r, = 1.841)is smaller than that of the TM,, mode for wh1ch = 3.832,
the Cut-off wave number of the TE 12 mode, given by n.r, § 331 is not
smaller, Consequently, if TM;, mode is neg11g1b1e 50 also is the TE |,
mode. The converse is not necessarily true, The preceding discussions,
therefore, suggest that the judicial choice of the first (or initial) and the
next higher approximations to the solution should be made in the following
manner, In the first approximation, both A (n > 2) and B, (£ > 1) are
negligible but neither of T;(¢) and T, (¢) can be disregarded. This means
that, in this approximation only, the TE,, mode exists in the waveguide,
however, both TE and TM mode are exclted in the unbounded space

In the next higher approximation, all A (n > 2) and B,g( 2 2) are
vanishingly small nut not B;. In this situation only, TE,;; and TM ;; modes
contribute to the fields. For the third higher approximation, A, #0, B, # 0,
but all other A, (n > 3) and B, ({ >z 2) are negligible, In th1s manner
the rest of the higher-ordered successive approximations to the solutlon
with any desired degree of accuracy, can be achieved in principle.

Letusnow turnto the procedure of obtaining the successive approximations
to the solutions of the unknown quantities appearing in (22), (23), and (53)
to (55), Using the superscrlpt son [, A, By, T,(%) and T,({) to designate
their respect1ve s™ approximation (where s = 1,2,...), the argument
made in the preceding paragraph motivates the following representations
of the unknown quantities sought for:

RS .

r= &r (561)

o (s+2) ‘.

An = si:l An (561i)

By = ElBL(S+1) (56iii)
5=

T, = £ T0 (561v)

s=1
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= (s)
T, LT, (56v)
Therefore, it should be understood in the above representations that the
lowest non- vamshmg terms of A, and B; are Ay @ and B, respectively.
Now, the relations (22) (23) and (53) to £55) can be re-expressed in terms
of I‘() A %D T, and T,® in the following manner:
(s+2)
o _ 1| (1+J."(S)) o A
Tl T wquo — Jy (T )* Wi, u);z J(ngr,) -
& n,? "
(37)
1 2
e By I 0T
-1 lg 2 2 Jl(rro ),
=1 A€ - x,T)
) (s+2)
o _ o A @R+ I M) L A J, () ‘
T = ¢ — - E | Tyt ), (58)
m, - £, o m,” - ¢
2
27) “drr £, (gr,)
(s) 1 o
Ayl -r?) = —— T, -
B[’ - 1] 3nx n’- g
(59)
-weoezjdt’ ¢ J,(¢r,) T (r)J
° 2
(S+2) 2i nn 9 m dr t g Jl'(rro) (S)
Ay = - g I‘o 2 2 T," () -
-1]1J,(r) n= -t
a{l l:(nnro) ] n o 0 n
(60)
¢ ©
= weoez j dc r J].(rro) T]_ (E)] ]
0
3
oy 2 Mey  Faretyem) TV (o)
B, = . (61)

roelJo(kl‘ro) ’ §2 _ }Lf

~ Let us now consider the second- order approximate solution for which
s = 1, and An(3) is negligible but not B, @, Then, we have;

Ar J (nr,) J; ' (€r,)
T2(1)= o001 ;0 21 [} {1_'_1_,(1) , (62)
T " - )
1
1 wu A J (nr)
¢ E ny

9 (63)
. Bl ‘eror JO(A-]_ro)
+ i 5 5 J; (tro) s
A8 - A7)
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- -1

"df ¢ 3% (er,)
B1(2) o 2wp €A T (mr )| g € ()L1 - ¢ ) (64)
A, [1 + r'(l)] elrpnlzJo(Alro) . 2ie, v, j"df ¢%1,%¢r,) .
i € E(Alz _ §,2) 2_

The relation (59) should also be considered for s = 1, together (62) to
(64) for the derivation of the aperture admittance, which can be shown to
be as;

Bi l1-p® | 2 "12("11',0)2 facee Jl'z(gro)
YHol1+ 0D | o ‘|:(n1ro)2 - 1] dom -’

Y (0)

+

2we_€ 5 da§ J, (Cr ) i4w6062271 |
X
[(nlro)z ) IJ 0 ¢ € [orty - 1]

j—’ da¢ ¢ J (§r0)
0 - g,z)

1 + 215271 "’:dg’ §’3‘112(&'0)

2, 2

2
E(g” -1

€
1

The equation (65) determines Y, Thus, when P is known, the re-
maining unknown quantities can be calculated from (62) to (64). Note that
for the lowest-order approximation, for which B,? is negligible, the last
term on the right-hand side of (65) becomes also vanishingly small, for
which case, numerical results have been found recently by Bailey, Samaddar
and Swift,

7. Approximate solution dervived from the variational expression

In this section, it will be demonstrated that the approximate solution
obtained in the preceding section dealing with successive iteration method
can also be obtained from the variational result given by (52) (subject to
the relation (49)) for the modified aperture admittance A,

Since the lowest value of n or n' in (49) and (52) is 2, any term haying
the subscript n or n' in those equatlons is negligible for the same degree
of approximate solution obtained in the Section 6. It should be noted, how-
ever, that only the lowest value of £ (or {'), namely Z, 2! = 1, will
contribute to this approximation,

With the aid of these assumptions, one finds the following approximate
result from (49) and (52) respectively.

(1 (4) (6)

-2 bje; "+ 2 b 1%1 + ¢y =0 (66)

and

- 3 5 r2 1 - 4
A = c11() + ¢ @ + b, {cl i } (67)
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It may be recalled here that for the lowest-order approximation for
which the contribution from the TM,, mode can be disregarded, the quan-
tities by, ¢,{®, ¢;® and ¢, appaering in (66) and (67) are also neg-
ligible, This implies that the axial component of the electric field at the
circular aperture is vanishingly small,

The substitution for b, from (66) leads Equation (67) to:

2
: 0, ]
A=c D+ ®+ Ll , (68)
11 11 4 [Clu) - (4)]

1

or
B -
Y(0) = —@il} ¥ E‘]:

2
) 2 2 (6):|
_ (o7 - 1] 3%y ORI O [Cll ,
2 11 11 4lc O - c (4_) *
1 11

(69)

In a straightforward manner, it can now be shown (with the aid of the
relations (40) and (42) to.(45) that the first, second and the third term of
the right-hand side expression of (69) are identical to the corresponding
terms respectively of the right-hand side of (65). Thus, it is demonstrated
here that the approximate solutions derived from two different methods
discussed in this paper agree with one another.

An inspection of the expressions (39), (65) and (69) which are independent
of A,, 0, and o,, shows that the aperture admittance depends neither on
the amplitude nor on the type of polarization (linear or elliptic) of the in-
cident TE;; mode. In general, the aperture admittance, Y(0)j, is a complex
quantity. For a‘proper matching of the aperture antenna to the unbounded
medium, it is desirable that the imaginary part of Y{0) should approach
zero, while the real part of Y(0) tends to Blfwuo (which is also equivalent
to [ approaching zero).

8. Radiation Fields

In view of the representations (14i) and (14ii), the expressions (11) to
(13) provide the asymptotic values (far fields) of the Hertz potentials F;
(r,$,z) and F, (r,¢,2). From these Hertz potentials, all the cylindrical
components of the radiated electromagnetic fields can easily be calculated
with the aid of the relations in (4). As an illustration, we simply present
here the z-components of the far field: '

Ko R
E,~- 0 K,°T, (¢ = K,sin 0) sin®0 cos 0 * R2 : (70)
KR
Ho, ~ - @) K,°T (¢ = Kysin 0) sin®0 cos 0 =g (71)
where,
z = R cos‘e
r =R sin 6 (72)

2
K = ’uo€o€2
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Now, instead of expressing the remaining cylindrical components of the
far field, it may be desirable for practical purposes, to know the spherical
components (0 and ¢ components which vary as exp (iK,R)/R). These
spherical components of the radiated field ean be shown to possess the

following representations:

@1 (¢) 3 . . eiKzR
E,, ~ 5 , T (£ = K_sin 8) sin 26. —¢-, (73)
@2(?‘) 2 . . eiKZR
E, ~-—5— wn K T, (¢ = K,sin ) sin 26, —5—, (74)
He2 ~ E062/“0 E¢2 ! (75)
e ™" Veoe2/uo E.- (76)

Note that the ¢-component of a field vector is the same in both the cylin-
drical and spherical coordinate systems.

For the final calculation of T, () and T,({), first of all ["(or Y(0) or A)
must be determined either from the relation (52} or by the method discussed
in Section 6 (see, for example, Equation (65)). Then, b, and A {depending
on the degree of approximations desired) are to be evaluated, Finally,
T;(f) and Ty(f) can be expressed in terms of I, A and B, (see, for
example, Equations (22) and (23)). The formal expressmns of the far fields
given by (70) to (76) are valid for any order of successive approximations
subject to their asymptotic behavior at large distances.

APPENDIX A
SOME INTEGRALS INVOLVING BESSEL FUNCTIONS

The following integrals have been used frequently in the text:

iy

= j dr [Jl(fr) dgf' J,r) + J,(n,r) ad; J1(§r):| , b= 1,2 ... (A-1)

° J. (A,r) J.(€r)
drl: dir‘Jl(k[r)ad;Jl(fr)+ 1 — },[

1,2,... (A-2)

4}
/
- for [ & sem v & 9,6)] (a-3)
0
= I €r) I, (¢r)
- j ar |r g I, (60) & T (o) + } (A-4)
4} _
Lo q d J i, r) Jy(n,r)
- )’ ar |r g I 00 7))+ (A-5)
0 - ,n = 1,2,3,...
-jodrrJ(kr)—d—J(r)+J 4 5
= 1 X7 gr I, 101,70 37 3, (A7) (A-6)
J L
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3 3y (n7) 3, (€7)
I, = j dr [r 2 5,00 -d% 3, (er) + — — - ] (A-T)
0
o I, (1) I3, (A )
18 = 5 dr [r ad-f- J]_()-,[r) Edf Jl(kllr) + - Ir - ' }l zl‘el = 132)"-
0 (A-8)
o= far [0 &7 (er) + T er) & 7 or A-9
9 10‘£ dr 1( 1( dr “1Y/ ) ( )
0

Now, using the differential equation satisfied by J,(z), [Watson (1944):]
the properties of Hankel transform [Morse and Feshbach, 1953 and the
relations J,'(n,r ) = 0, J;(A,r ) = 0, the values of the above integrals
can readily be shown as presented in the following:

1, = J,(nx,) J,E&r,) (A-10)
AT, €2 T (€r) T (0r))
I, =~ = L (A-11)
§ - kz
[;=0=1,=14=0 (A-12)
I, =08 (-¢) | (A-13)
[r)® - 1]
Iy = 3 J 78 ) 8 (A-14)
2
nlr, ¢ J(nr,) 5 (er,)
I, = : 12 e (A-15)
(2% - ¢2)
2
o ),
I, == 3—J,70yr,) 84, (A-16)

The quantities &, and &,,, are Kronecker delta functions, whereas §(¢-¢")
is a Dirac delta function.

APPENDIX B
PROOF OF THE STATIONARY CHARACTER OF A

In order to prove that A given by the relation (36) is in its variational
form with respect to the first-order simultaneous variation of £,(r) and
£,(r), it will be found useful to establish some sort of symmetry properties
of2 the operators L(r,r'), where s = 1,2,3 and 4. Defining L(r',r) as
the operator, which is obtained by interchanging r and r' in L (r,r'), an
inspection of the expressions (32) to (35) shows that the following relations
hold true:

I I
0

5 dr v €,(r) Ly(r,r')E (r') = jdr' rt £y (r")L,(r',r)Ey(r) (B-1)
0 0
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[o I

5dr r £,(r) Ly(r,r")E (') = jdr' r' & (r")Ly(r',T)E (T) (B-2)
’I(‘)hough °
jdr r £,(r) L (r,r")E (r') # jdr' r' € (r')L (r',T)E, (r) (B-3)
0 0
jodr r € (r) Lr,r') £,(r") £ jodr' r' £ (r')L (r',r)€ (r) (B-4)
woe have "

jodr r €,(r) L (r,r') € (r') = "odr r & (r')L (r, ) E (r) =
0

0
: 0

= jodr' r'El(r') L4(r',r)_62(r) = jdr' r! Ez(r)L4(r',r)£1(r')

(B-5)

I

0 0
5 drir! £,(r" )L (r', )€ {r) = jodr'r' €1(r) Ly(r', 1) Eyr') =
‘g 0 i (B-6)
= j.dr r E(r)L (r,r")Ey(r') = }.dr r £ (r')L (r,r') €, (r).
0 0

Now, a first-order variation of A given by the expression (36) with respect
to the simultaneous variation of €,(r) and £,(r) gives the following result:

L2sA + 2L A [.‘ dr J (n,r)6€ (r) + fdr r d—‘i T (nr)sEy(r) =
r0 ’ ‘ r0
= 5 dr r 6E (r)L(r,r*)E (r") + —’. dr r &€ (r)Ly(r,r')s€ (r') +
0 0

I T
(o)

+ j dr r € (r)Ly(r,r*)Ey(rt) + }. dr r £,(r)Ly(r,r')6E,(r") +

0 g
I Iy

+ j dr r 6 £, (r)L (r,r*)E (") + 5 dr r E,(r)L(r,r')6 &, (r') +
0

0
T I

+ fdr r 68 (r)L,(r,r')E,(r') + fodr r €, (r)L,(r,r')6E,(r") +
b 0

or
|2

L,%sA = j dr r &E,(r) l:—ZLOA Ed; J (n 1)+ Lyr,r*)E,(c") +
0

. .o J
+ Ll(r,r')El(r'):] + j dr r 6&, (r) [-ZLOA l(rnlr) +

0

+ La(r, r")€, (') + Lylr,r") Eg(r')i\+
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I

+ j dr r € (r)Lg(r,r')6€ (r') + j dr r €, (r)L (r, 1 )8 E H(r*)
d

Io I

+§ dr r £y (r) Li(r, )& (r) +j dr v £ (r)L,(r,r")8& o) (B-17)
0 0 '

Now, by virtue of the properties (B-1), (B-2), (B-5) and (B-6), the following
relations can be established;

50dr r £ (r)Ly(r,r')8E () = fdr r §&, (r)Ly(r,r')E (1), (B-8)
0 0

5 dr r £,(r)L(r,r )6E (r') = .’.dr r §E,(r)Ly(r,rt)E,(r"), (B-9)
0 0

jodr r £, (r)L,(r,T")sE (r') + fdr r £ (r)L,(r,r')s€,(r') =

0 : 0 ; (B-10)

= 5 dr r 652 (r)Ll(r,r')El(r') +j dr r 651(r)L4(r,r')£2(r' ).
0 0

In view of (B-8) to (B-10) together with relations (27) and (28), it follows
readily that the right-hand side of (B-7) vanishes. Therefore, since L # 0,
we have 8A = 0; i.e.,, A given by (36) is stationary with respect to the
first-order simultaneous variation of £, (r) and &, (r) about their respective
correct values,
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